Lo

SHAHAF GAL
7

ik
iy 45

i P

Footholds for Design

In a design environment, knowledge is generated, enacted, and
reflected on in an ongoing process between the materials and the
participants’ intentions and attached meanings. Learning occurs
when users create concrete things, such as dvawings and models,
based on their knowledge, and then reevaluate that knowledge

based on what they have just learned.

11. FOOTHOLDS FOR DESIGN

In conjunction with Donald Schon (see Chapter 9), Shahaf Gal con-
ducted a series of studies of engineering students completing design
projects. The story of Ray’s bridge, recounted in this chapter, was one
of four cases that Gal analyzed in detail. Ray’s experience in a 3-week
student design competition offers us a distilled and visible version of
what happens in more sophisticated and hidden ways in every design
project. The problems that Ray grapples with have direct mappings
onto software-design contexts: top-down versus bottom-up approach-
es; the practice of basing new designs on standard examples; the temp-
tation to use materials because they are available; and the struggle
between adding features and simplifying.

Ray goes through a directed but winding search, adding and drop-
ping concerns that constrain his design, being surprised by the results
of explorations, and making messy decisions that change over the
course of the project. He is a student, not an expert, and his lack of
sophistication helps to reveal the process more clearly, since the break-
downs are more visible without the facade of expert polished perfor-
mance. We can clearly see the tradeoffs between different concerns,
the abandonment of a path when it seems to have reached a dead end,
and the pain of getting stuck. As David Kelley points out in Chapter

8, these phenomena happen to every designer, and are not to be
avoided.

—Terry Winggrad

SAEND

COMPUTERS CAN PLAY AN IMPORTANT ROLE in the design process,
as imaye footholds. In a design environment, knowledge is gener-
ated, enacted, and reflected on in an ongoing process between the
materials and the participants’ intentions and attached meanings.
Learning occurs when users create concrete things, such as drawings
and models, based on their knowledge, and then reevaluate that
knowledge based on what they have just learned. If we are to respond

Author’s acknowledgment: I thank Vanessa DiMauro for bringing the rock-climbing
analogy to my attention.

216

GAL

effectively to design situations, our tools—including those based on
computers—need to be aligned with the process of the design
inquiry.

An analogy for the role of computers in a design environment is
that of rock climbing. A rock climber knows that she wants to get to
the top of the mountain. She chooses a route for the climb based on
her knowledge when she is at the bottom of the hill. As she climbs,
she constantly faces new situations where she needs to choose a new
footing to proceed. She seeks footholds that are safe and stable on
which to pause momentarily to catch her breath and to plan her next
step. Each foothold is both an endpoint that sums all the steps she has
taken so far, and a point of departure from which to plan the next
one. Her choice of a new foothold is determined by the steps that she
has taken to get to her current position on the mountain in relation to
her goal. She is also guided by her past climbing experience, and she
uses her rock-climbing tools as an anchor. At each step, she needs to
plan her next step considering what is in her reach; each step presents
her with new and different conditions. Thus, a rock climber continu-
ously faces a challenge of making future decisions based on the here
and now of her foothold.

Like the rock climber, designers face similar challenges in design
settings. Situations of design evolve constantly as a designer secures a
point in the design on which he feels safe relying, then moves on
again. The following story of a student designing a bridge illustrates
the use and value of a computer program that serves as a design
foothold. The general principles discussed at the end of the chapter
show how the lessons go beyond this case.

The Riddle of Die Briicke

Ray was a senior in mechanical engineering at the Massachusetts
Institute of Technology (MIT). As a high-school student, he gained
experience working with wood, especially with balsa wood. Ray
designed and constructed a bridge as part of the fourth annual bridge-
design contest at MIT in the winter of 1988. This bridge contest was
his first; he worked by himself, in competition with 16 other students
from different departments within the School of Engineering. Their

217

11. FOOTHOLDS FOR DESIGN

task was to build models of bridges that could best withstand a test
load. Participants were given a kit of materials containing strings, wire,
glue, and a variety of wood blocks—basswood, balsa, and pine. They
had 3 weeks to complete the project.

Students were encouraged to use the engineering laboratory and
Growltiger—an expert-system engineering program—to build their
models. Growltiger’s purpose was to serve students as a design tool
and as a virtual laboratory for experimentation in structural engi-
neering. As a virtual laboratory, Growltiger is programmed as a
channel of guided discovery, where the system guides designers to
enter the necessary data for structural analysis, to manipulate the
appropriate computational components, and to evaluate the results
against known parameters of structural engineering. The program
also assists the designer by providing a default setting that offers
standard-sized beams, properties of standard construction materials,
and four types of indeterminate structures. Thus, students can test
how their designs behave in accordance with a range of standardized
degrees of tolerance. The test can serve as a starting point from
which students try to optimize the structure. They can then change
the shape of the structure, the loading, and the stiffness. Within sec-
onds, the new structure can be analyzed and tested.

Students can also use Growltiger as an open-ended design tool,
building their own structures. With the exception of curved supports,
students can design the structure, and decide on the kind of material
and the loading system; the program will display the deflection. (See
Figure 9.2).

Top-Down Design

Ray chose a strategy for building his bridge that attempted to address
a range of issues. He strove to manage effectively the time and manu-
facturing constraints (gluing, amount of work), while creating a strong
bridge that was beautiful and original. He aimed to build with a clear
design concept. As a partial response to the tradeoff, Ray searched for
a bridge with simple structure that would be easy to manufacture. In a
design notebook that he kept throughout the contest, Ray wrote at

218

GAL

this early stage:

e Main problem: TIME! TIME! TIME!
e Main constraint: Bridge must be finished in time!
e Main tradeoff: Aesthetics and partial stability versus speed of construc-

tion

Ray believed that he could build the bridge in a classical top-down
approach: arrive at a concept, prepare a few alternative designs, narrow
down to one design, work out its details, check the materials available,
and move on to manufacture the bridge.

What I originally proposed was a clear top-down approach. You start off
with comparison of main frames, which means main ideas for designing a
bridge, as I did here with several design sketches. For example, take those
six ideas of bridges, then take the two best ones, and then elaborate on
those to get a good idea of how the geometry looks. Then, go back to the
material. From there on, it’s a circle among material, manufacturing, and
the design; they are all factors from then on, but only from then on. That
is a classical top-down approach.

Following this top-down scheme, Ray started by collecting ideas
about bridges, and searching for a bridge-design concept. He watched
a video of the previous year’s bridge contest, looking especially for the
mistakes participants made in their design, and he leafed through a
book on bridge designs. The Roman arc bridges caught his attention
first—they last long, which is proof that they work, he reasoned.
Following more reading, he contemplated two other kinds of basic
designs—the bow bridge and cable-stayed bridge—and leaned toward
the latter in which he had more trust.

After his search, he decided to stick with one general structural
idea: to use twin towers—a two-legged bridge—in his design. The
concern about settlement of such a bridge introduced the idea of a
hinged center span so that each tower would act as an independent
element in carrying the load. Given these three considerations, he
drew his first design: a two-towered, cable-stayed bridge with a
hinged center span (Figure 11.1).

Ray soon realized, however, that the hinge mechanism would
destabilize the bridge, and would require much construction work.
Still worried about the uneven settlement of the towers, he considered

11. FOOTHOLDS FOR DESIGN

Hinge

FIGURE 11.1 Fan Cable-Stayed Bridge with a Center Hinge Working
with sketches, Ray could explore both the visual and mechanical properties of
his proposed designs. This bridge had a certain elegance, but the hinge could
destabilize it.

a bridge with a freely suspended span that would rotate and compen-
sate for the settlement. The bridge would be like an arc, and would
swing back and forth to compensate automatically for the settlements
(Figure 11.2).

Time constraints and concern about the strength of the strings
caused Ray to drop this idea altogether. He decided to tolerate the
settlement problem as a constraint, and remained with cable-stayed
bridges.

He then tried another angle on bridges, secking beautiful bridges.
Hyperbolic bridges and classical cable bridges—such as the Golden
Gate Bridge in San Francisco—attracted him the most. In his design
notebook, he experimented with cable-stayed bridges arranged in
hyperbolic patterns. Ultimately, however, he found this pattern
impractical because the nearly horizontal members could carry only
small loads.

Feeling the pressure of time, Ray dropped the search for aesthetic
bridges and focused on function: cable-stayed bridges with vertical

FIGURE 11.2 Arc Bridge Each half of the arc could swing back and forth
to compensate for settlement. This rough sketch was an attempt to solve a
specific technical problem, as a prelude to a more comprehensive design.

220

GAL

FIGURE 11.3 Suspension Cable-Stayed Bridge The classical suspension
bridge was aesthetically pleasing and made use of the string as a tensile mem-
ber. In looking for the best overall design, Ray was balancing constraints in
several different dimensions, including beauty, strength, and feasibility of con-
struction.

tension members. Ray then placed an additional constraint on his
bridge: to use as much as wood and strings as possible, for maximum
strength. The kit had plenty of materials, and he liked to include hori-
zontal tension members:

I am trying to make the maximum with the material that I have been
given. The string is the longest piece of material I’'ve been given, and it’s a
tensile member, so I want to take advantage of it. You could design it
without strings, of course: I just believe in using all the material.

The bridge design was then changed into a suspension bridge, as in
Figure 11.3.

Ray eliminated this design soon after its inception, because a top
cable would weaken the bridge—the bridge needed to be very large
and the vertical strings to be very long, and the forces acting on them
would be very strong. A few days into the contest, Ray was stuck.
Time was becoming a critical factor, and his brainstorm sessions had
resulted in neither a clear design nor any elaborate specific structural
constraints. Ray decided to change his general approach.

Simulation as a Design Tool

Ray now turned to Growltiger to help him choose from the various
designs. His decision to use Growltiger for that purpose did not come
easily. After seeing a demonstration of the system, he felt a general
mistrust of its capabilities and usefulness. Growltiger, he reasoned, did

221

11. FOOTHOLDS FOR DESIGN

not design; it simply helped the user to evaluate design parameters. In
addition, he surmised that the system would not be useful for con-
structing the bridge, because its design model was too simplistic to
match an actual bridge in its environmental context.

At this point, however, Growltiger proved useful. Ray prepared six
preliminary models of the main bridge types, each reflecting main
modes of handling load, and had Growltiger predict their success
using default material properties. During the comparison of the
designs’ general structural behavior, he noticed that two designs
showed the greatest strength. He therefore narrowed the possible
bridge candidates to two designs: the cable-stayed bridge and the
girder bridge.

He then ran a comparative analysis of the two bridges, elaborating
and changing their design, and testing various structural options. The
bridges, he found, were both strong, but they behaved differently:

These two performed well. The girder bridge was decent, too, to my sur-
prise. It’s the simplicity that gives it a rigidity that’s amazing. Looking at
how it bends and how it behaves, I could see how stable, it would be—
what the overall performance would be.

Ray was using the computer as a medium for reflection, in which to
explore the kind of surprises that Schon describes in Chapter 9. His
conversation with the materials (even in this simulated medium) led to
new insights and provided a way to test his specific design ideas.

Conversation with the Materials

After using Growltiger, Ray realized that bridge construction must
begin from small components of the bridge. Most important, he real-
ized how critical it was to link the overall design approach with the
process of constructing the pieces of the bridge. This realization was
the catalyst for another shift in Ray’s approach. He changed the direc-
tion of his work from top-down to bottom-up, as he became con-
cerned with construction issues, which he had thought he could leave
for later. He also began to have second thoughts about building a
cable-stayed bridge that relied solely on strings as the main system to
transfer the load. The strings, he realized, had limited reliability as

222

GAL

tensile members, especially because the strength of the bridge largely
depended on the string attachment to the wood, where the stress will
be concentrated. This shift in approach brought about a change in
Ray’s activities. Ray now needed to test the various components of the
bridge. He decided to use the physical laboratory to test the perfor-
mance of the deck and the supports, which he believed were impor-
tant to any bridge. He started testing generic examples made of wood.

When you do experiments, you get an idea of the material. That’s some-
thing Growltiger doesn’t give you at all. You build the box, touch the
materials, glue them. I got a lot out of it.

The laboratory tests provided him with a deeper understanding of
the structural behavior of the beams and ribs for his deck, which could
not be provided by Growltiger’s simulation. For a structure of the
deck, he compared three alternative approaches. Based on the results,
he eliminated two options and decided to go with the box girder,
which had unexpectedly proved to be the strongest.

Ray’s concern about the weight of the bridge and the use of strings
as the main material for the tensiles caused him to recheck the litera-
ture on cable-stayed bridges for the kinds of tensiles and cable arrange-
ments used. He learned that the most effective cable arrangement for
carrying load keeps the tensiles vertical to the deck. By this point, his
bridge design had become detailed and definite: the overall design
would be a cable-stayed bridge, with a box-girder deck, two towers, H-
supports, and many tensile members made of strings (Figure 11.4).

FIGURE 11.4 Cable-Stayed Bridge with H-Supports and Strings

Ray’s experiments with the physical materials led him to consider this design,
in place of the earlier suspension design. Working in the laboratory gave

Ray insights about practical construction feasibility that were not provided by
the computer simulation.

223

11. FOOTHOLDS FOR DESIGN

Following his experiments in the laboratory, Ray remained con-
cerned about the use of strings to support the towers. At first, he tried
to calculate the load that the strings would carry. He returned to the
problem of how to attach the strings, and could not find a solution.
At that time, he considered dropping the idea of a cable-stayed
bridge. But he could not tolerate the thought of omitting the strings.

I could not let go 100 feet of worthwhile material! So, I looked for a dif-
ferent solution, and that was the first time that I came up with the idea,
“Why not use an additional bar across, and use vertical strings?”

Ray then planned one deck on top of the load-carrying deck, and
another below, from which 30 to 40 strings would link the load-carry-
ing deck with the bridge’s deck. That design would use the strings
and the remaining basswood. This idea also linked and resolved many
of his earlier concerns about structural forces, use of strings, and use
of as many vertical tensiles as possible.

I didn’t come up with the idea of vertical strings. It came from constraints
propagation—from the top and from the bottom. It just suddenly popped
up. I stuck with it because I felt good about it. All the problems I was wor-
ried about before—the materials, strings that I had, vertical alignment, ver-
tical force performance—were solved by this design.

Ray’s bridge design, which he called Die Briicke (the Bridge), now
looked like Figure 11.5.

FIGURE 11.5 Triple-Deck Bridge with Strings as Vertical Tensiles
Ray was led to this design in a creative leap (see Kelley’s discussion in Chap-
ter 8) that grew out of his persistent focus on how to make use of a single
design element—the strings.

GAL

FIGURE 11.6 Ray’s Final Design Structural analysis, construction con-
cerns, and a desire to use all of the available materials all played a role in pro-
ducing the final bridge design.

In the final moments before the contest, Ray decided to add trusses,
which he had considered previously, to strengthen the support of the
towers. His final bridge is shown in Figure 11.6.

At the testing session that culminated the bridge-design competi-
tion, Ray’s bridge drew much attention from other participants and
from the audience. It passed the first loading test, but failed in the
second round, when both ends of the deck were crushed. In the over-
all contest, the bridge came in fourth place.

Growltiger as an Image Foothold

This detailed case illuminates the many and messy decisions that take
place over time in a design situation. The process of design evolves as
a process of identifying emerging new questions to address. Through
the task, a personal design world is created within which answers are
sought out with the use of tools (Figure 11.7).

The personal design world is bounded by the designer’s tools and
design knowledge. The challenge of the situation is to create a way to
test a proposed design solution—which in turn generates new ques-
tions. Each point of testing requires the designer to pause on the
question, while considering future design questions. She uses design
tools, drawings, and models to create design pauses that momentarily
freeze the knowledge, and that represent a culmination of the knowl-
edge gathered thus far. Engineering drawings, geometric displays, and
algebraic computations assist engineers in maintaining an image, a

225

11. FOOTHOLDS FOR DESIGN

Engineering
lab

Bridge

Readings on
bridges

Growltiger

FIGURE 11.7 Ray’s Personal Design World Ray’s design world is com-
posed of the tools and design knowledge that he applied to the bridge prob-
lem. Each component can lead to new questions and new solutions.

map for orientation, and a language for explaining the design in the
process of work.

Reflecting on Ray’s experience, it is interesting to observe his use of
the computer. Ray used Growltiger to hold images of his design ideas,
to test their quality, and to set constraints on his work. And—unin-
tended but perhaps more important—his use of Growltiger shifted his
design process. Ray first attempted to work top down. Time con-
straints and his inability to yield enough concrete constraints on his
bridge design caused him to rethink his design approach. When he
got stuck, Ray used Growltiger to come up with basic bridge-design
ideas that guided his work. From the bridges’ simulated performance,
he learned about their load mechanisms: the cable-stayed bridge using
cables to transfer the load, and the girder bridge using its rigid beam.
This knowledge led him to try alterations on each bridge.

The session with Growltiger turned out to be important to his
work in another way: It placed the first concrete design reins over his
work—from there, he worked within the conceptual frame of these
two bridge designs.

Growltiger also served as a preliminary trigger to a moment
when—not by intention—all Ray’s bridge design theories and work
strategies amalgamated into one cohesive image of a bridge.
Growltiger provided the critical piece: It was an #Zmage foothold in the
jigsaw puzzle that he was putting together. He used the computer to
trigger, unintentionally, a critical reflective moment that allowed him

226

GAL

to focus on a bridge design. It also provided him with a reflection of
his design strategy. The design strategy and image foothold are part of
the same design initiative. They are not easily separated, because it is
the strategy that gave birth to the image, and it is the image that
informed the strategy.

A significant challenge exists here for software designers. They need
to create tools that assist designers to reflect on past steps, and to
inform plans for the next foothold—while allowing for the designers’
creativity to emerge and to be tested in an intentional way.

Suggested Readings

Ken Baynes and Francis Pugh. The Art of the Engineer. London: Lund
Humphries, 1981.

Shahaf Gal. Building bridges: Design, learning, and the role of computers.
Journal of Machine-Mediated Learning, 4:4, 1991, 335-375.

Chris Jones. Essays in Design. London: Wiley, 1984.

Donald Schén. The design process. In V. Howard (ed.), Varieties of Thinking.
New York: Routledge, 1990.

About the Author

Shahaf Gal directs the Computers for Instruction
Department of the Centre for Educational Technology in
Tel Aviv, the largest educational computer research and
development company in Israel.

227

11. THE SPREADSHEET

One of the major developments that changed the face of computing was
Dan Bricklin’s introduction in VisiCalc of the conceptual model of the
spreadsheet. Neither VisiCalc’s command interface nor its information
display (limited by the capacity of the machines that were available, and
by how much space VisiCalc required) was remarkable. However, the
conceptual model was exceptionally durable. With the additional design
work of Mitch Kapor and an implementation on the IBM PC, the suc-
cessor program, Lotus 1-2-3, quickly surpassed VisiCalc, and was the
killer app that moved the microcomputer from the hobbyist’s and stu-
dent’s desks into the mainstream of the business world. In its time, it
was a radically new idea; it led to the PC revolution that populated mil-
lions of offices all around the world with desktop computers.

In hindsight, the idea of a computer spreadsheet seems obvious. The
accountant’s ledger sheet, with its two-dimensional grid of rows and
columns, has long been a fundamental tool in professional accounting
practice. When an accountant prepares a budget or financial statement,
typically each row represents a different line item, and each column pre-
sents the amount of that item in a given time period. There were many
programs on mainframe computers, before VisiCalc, that produced out-
puts that looked like ledger sheets. But a dramatic (and largely unex-
pected) change came from the spreadsheet’s interactivity, and from the
‘role that interactive use played in the activity of financial modeling.

Forecasting is a basic business activity, which calls for projecting
alternative financial results based on choices and assumptions, such as
the expected sales, cost of goods, possibilities for investment, and so
on. Results, such as the amount of profit or loss, are calculated for

Profile Author: Terry Winograd

228

WINOGRAD

each of the alternatives, often for a sequence of time periods (month
by month, or quarter by quarter for several years). In practice,
preparing a projection or a budget is an iterative design process.
Different sets of assumptions lead to different results. On the basis of
seeing these results, the financial analyst often wants to see what
would happen if assumptions or strategies were changed. Doing mul-
tiple revisions on paper requires laborious reentry and recalculation.
Programmable calculators sped up the calculation aspect, but still left
users with much furious button punching and number scribbling.
Bricklin’s insight was that the financial-projection process could
done interactively on a microcomputer. He created a computer screen
that mimicked the structure of the paper ledger sheet (Figure 11.8) so
that it would be familiar and easily adopted. He extended the possibil-

READY

(in Millions)

Revenues

Expenses

Total Expenses

Profit (Loss)

16-tlay-87 1:15 PU

FIGURE 11.8 The Spreadsheet The now-familiar format of a spreadsheet
was developed for VisiCalc and refined in Lotus 1-2-3, shown here. The tradi-
tional arrangement of rows and columns in an accountant’s ledger was the
base for a new kind of affordance—the ability to calculate changes in an entry
automatically, based on a formula that defined the entry’s value in terms of
other entries. Although the idea seems simple, it revolutionized the way that
financial work is done. (Source: Courtesy of Lotus Development Corp.)

229

Profile 11: THE SPREADSHEET

ities for the contents of an individual cell, to include not just text or a
number, but also a formula for calculation, which can be based on
results from other cells. With this structure, all the logic necessary to
recalculate the spreadsheet is stored in the spreadsheet. When the con-
tents of a cell are changed in a spreadsheet, all the cells whose values
depend on that one are automatically, almost magically, changed. All
the complexities of intermediate calculations are invisible, unless the
user chooses to examine them.

The spreadsheet was fundamentally different from earlier programs
for financial calculation, with their unbridgeable separation between
program and data—corresponding to a nearly unbridgeable separation
between programmer and accountant. The key innovation was not in
the interface elements or the software structure, but rather in the vir-
tuality provided to the user—the underlying world of objects and
their behaviors. The spreadsheet virtuality combines the regular struc-
ture of the familiar ledger sheet with an underlying structure of inter-
linked formulas. The nontechnical user can build a complex financial
model incrementally, and can explore the model through successive
iterations of inputs. This quantitative change in ease meant a qualita-
tive change in how people worked with the data.

The interactivity of the spreadsheet made it possible to create
what Shahaf Gal (Chapter 11) calls design footholds. The person
designing a financial plan can quickly represent alternatives and
explore the consequences of specific decisions. The power of the
spreadsheet lies in the interaction between calculating results and
inventing new possibilities.

An additional dimension that appeared in the next generation of
spreadsheets, initiated by Lotus 1-2-3, was the ability to write short
macros that could reproduce the action of a series of key strokes.
Further, by the inclusion of simple control constructs (if-then, go to,
etc.) and interfaces to the user interface (to display and process menus
and prompts), the macro capability provided a general capability for
user programming. In a way, user-created macros were the solution to
the tension between direct manipulation, with its direct mapping of
action to result, and programming, with its use of abstractions to cre-
ate patterns of activity that do not depend on the specific data. The
initial spreadsheet moved away from the programming-based models
of mainframe financial software, making it highly usable but limited in
power. The addition of macros brought back a good deal of that pro-

230

WINOGRAD

gramming power to the ordinary user, or at least to the superuser (or
local expert) whose background was in the financial world, but who
could produce macros for use by other users (see Nardi, 1993).

Now that the spreadsheet is widely available, it has come to be used
for many tasks that have nothing to do with finances. A spreadsheet
can be used for any activity that calls for calculating regular arrays of
values that are interrelated by regular formulas—especially for those
activities that call for exploring alternatives. Professors use spreadsheets
for grading courses, scientists use spreadsheets for interpreting data
from experiments, and builders use spreadsheets for keeping track of
materials. New kinds of spreadsheets have been developed that fill the
cells with visual images, sounds, and other data representations, inter-
linked by formulas that perform calculations in the appropriate domain.

The lessons to be learned from this history are not about the specifics
of the spreadsheet; they are about the underlying reasons for its power.

The power of representations. Although the underlying calculations
for financial modeling were not new, the representation of an active
array of formula-based values created a new virtuality—a world in
which to work.

The power of interactive modification. Because the recalculation of a
spreadsheet could be done interactively as part of the flow of a
modeling process, it could be used as a design foothold—as a way
of making concretely visible a set of assumptions and relations, see-
ing what they produced, and using the results to guide the next
round of modifications. :

The power of incremental programmability. The macro language for
spreadsheets created a vast army of superusers, who did not see
themselves as programmers, but who could produce spreadsheet
templates that carried out complex and useful work for themselves
and for colleagues in their workplaces. Giving end users control of
their tools was a major theme of the PC revolution. When users
became less dependent on a priestly caste of programmers to
accomplish their tasks, their productivity flourished.

Suggested Reading

Bonnie Nardi. A Small Matter of Programming: Perspectives on End User
Computing. Cambridge, MA: MIT Press, 1993.

231

