
Chapter 12

APPLIED SCALING THEORY

David C. Schneider

The increasing use of scale represents an enduring change in the way 
that ecological research is pursued, rather than another idea in a suc­
cession of concepts (often borrowed) that have passed through ecology. 
Strong interest in the topic is now over a decade old and still bur­
geoning. Multiscale spatial analysis can be traced back to agricultural 
trials in the early part of the century (Mercer and Hall 1911), with 
several notable developments in the 1970s, including recognition of the 
need for explicit choice of spatial scale in survey design (Wiens 1976; 
Smith 1978), and the linkage of space and time scales in paleontology 
(Valentine 1973), terrestrial ecology (Shugart 1978), and aquatic ecol­
ogy (Haury et al. 1978; Steele 1978a). In the mid 1980s, the rate of 
publication on spatial scaling expanded rapidly.

The need for multiscale spatial and temporal analysis is now widely 
recognized. It has become increasingly clear that (1) spatial and tem­
poral patterns depend on the scale of analysis (Platt and Denman 
1975; Delcourt et al. 1983), (2) experimental results cannot be extrapo­
lated directly to larger scales (Ricklefs 1987), (3) biological interactions 
'vith the environment occur at multiple scales (Harris 1980; O’Neill et 
al. 1986), (4) population processes do not occur at scales convenient 
for investigation (Dayton and Tegner 1984), (5) environmental prob­
lems arise through propagation of effects across scales, and (6) there is 
ao single or “characteristic” scale for research (Levin 1992).

Verbal and graphical concepts from the 1980s are now evolving 
aito quantitative techniques. Two books (Turner and Gardner 1991a; 
Schneider 1994a) have appeared, and new techniques continue to be
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developed (O’Neill and King, chapter 1). There are so many tech­
niques, some highly complex, that no investigator is able to master 
them all. This chapter suggests a generic approach that is accessible to 
any ecologist.

This generic approach begins with a careful definition of scaled 
quantities, which can be rescaled either isometrically or allometrically. 
The concept of allometric rescaling is extended from mass-based 
power laws to less familiar length- and time-based power laws. The 
concept of scope arises naturally from these power laws, and it proves 
to be widely useful in applying multiscale analysis to practical prob­
lems. Examples of application include scope diagrams for natural phe­
nomena, measurement instruments, surveys, and experiments. The 
principle of homogeneity of scope provides a link between scaling 
theory and statistical analysis, and it also proves useful in linking ex­
periments (typically at a small scale) to theory (typically at a larger 
scale).

Scaled Quantities

Ecologists work with definable quantities, not with pure numbers or 
mathematical abstractions divorced from measurement. The distinc­
tion between a quantity and a number might appear to be inconse­
quential, but it is not. The mathematical rules for working with scaled 
quantities differ from those for working with numbers. When a number 
{N = 78) replaces a quantity such as world population size—78 Grus 
americana (whooping crane) in 1981—scale is lost.

A well-defined quantity has five parts: (1) a name, (2) a symbol, 
(3) a procedural statement that prescribes the conditions for measure­
ment, or for calculation from measurement, (4) a set of numbers gener­
ated by the procedural statement, and (5) units on one of several types 
of measurement scales. A measured quantity is conveniently repre­
sented as a symbol that equals a set of numbers arranged inside brack­
ets, multiplied by the unit of measurement. An example is the length 
of Gadus morhua (codfish) upon settlement out of the plankton into 
benthic habitats:

Procedural statement Name Symbol Numbers • Units

Length, snout to 
caudal peduncle

Standard
length sL

‘55'

83
-48_

mm
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Units occur on one of the four types of measurement scales defined 
by Stevens (1946). On a nominal scale, the units are “yes” or “no” 
(present or absent, 0/1, etc.). On an ordinal scale, the unit is the rank 
of an object. On an interval scale, the unit is a count of the number of 
units that separate one measurement from another. For interval scale 
measurement, the textbook example is temperature in degrees Celsius: 
the zero point is arbitrary. On a ratio scale, units are counted from a 
natural zero point; the textbook example for this scale is temperature 
in degrees Kelvin. Both ratio scale (e.g., mass) and interval scale quan­
tities (e.g., degrees Celsius) are used in rescaling.

Allometric Rescaling

Any quantity can be rescaled according to its similarity to another 
quantity. The rescaling is isometric if a direct proportion is used. For 
example, the volume of an animal scales isometrically with mass be­
cause animals are composed largely of water, which is nearly incom­
pressible. Consequently, a rescaling of the volume (say, by a factor of 
2) will rescale the mass by the same factor. The idea of isometric rescal­
ing can be expressed as a proportion:

Volume,.^ ^ Mass,,^ 
yolume^^ Mass^^,

Allometric rescaling occurs if the proportion is other than direct. 
The volume of an organism will be proportional to the volume and 
hence to the cube of the length, not to length itself A rescaling of 
length (say, by a factor of 2) will change the volume by a factor of 2\ 
The idea of allometric rescaling is expressed as a proportion modified 
by an exponent:

Volume,.^ ^ f Length,.^ "j 
Volume^,, [Length^^,)

Another way to look at this is that for isometric rescaling, the scaling 
exponent is unity, whereas for allometric rescaling, the exponent differs 
from unity.

Allometry usually refers to a special case of allometric rescaling in 
which function or form has been scaled to body size. An example is 
respiration, which scales as (Massf’. Allometric rescaling according
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to body size was developed by D’Arcy Thompson in his 1917 treatise 
On Growth and Form (Thompson 1961). This landmark book in biol­
ogy illustrates the principle of similitude with examples based largely 
on body size and geometric similarity. Thompson advocated the more 
general principle of similitude, which includes geometric, hydrody­
namic, thermal, and other forms of similarity. Recent authors (Peters 
1983; Schmidt-Nielsen 1984) have tended to expand the term toward 
its root meaning, which refers to metrics other than body size.

The steps in allometric rescaling are;

1. State the conditions under which two quantities are considered 
similar.

2. Express similarity as a proportion. The generic expression re­
scales a quantity Q according to similarity to another quantity Y:

Gold \ Y
‘■old y

(3)

3. Rearrange to permit calculation of the rescaled quantity 
from according to the allometric rescaling factor

Gnew GoU
^Y

new

Y\^old J
(4)

The rescaling factor is a ratio {Y^JY^^ raised to the power p. This 
ratio will be called the scope of the rescaling. Y can be any quantity. 
The most common is mass, for which there is extensive literature (Pe­
ters 1983). Allometric rescaling according to length has become in­
creasingly common (Sugihara and May 1990).

Here is an example of allometric rescaling according to body mass. 
Maximum running speed (fTnux = m • s“‘) does not increase isometri- 
cally with body mass; the scaling exponent as estimated by Bonner 
(1965) is p = 0.38, and hence

I, IV small J
(5)

Rearranging this expression results in an equation for calculating the 
rescaled quantity:

Vmax,.^{M^^„lM,J-^^ = Vmax.

2 ms-'(1/2)“®
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'small

1.5 ms"'

(6)

The following calculation is for a halving of body mass:

= G2 = lkg/2kg = lg/2g = ...)

At half the body mass, speed is rescaled downward by (2 - 1.5)/2 = 
25 percent, rather than by half

Here is an example of allometric rescaling according to length. In a 
mosaic habitat such as a grassland, the area of bare soil does not scale 
isometrically with total area. Wiens and Milne (1989) estimate the scal­
ing exponent to be 1.8 and hence

Asoil.big

Asoil

( T * 
V ^situdl J

(7)

This expression says that the area of bare soil {Asoil = m^) scales with 
length (L = m) raised to fractional power (1.8), rather than with total 
area {U). Because the exponent relative to length is not an integer, it 
is called a fractal dimension. The physical interpretation of this fractal 
scaling is that barren soil occurs as a rambling network that becomes 
less evident at larger scales. Thus, doubling the measurement scale L 
will not, on average, double the area of bare soil.

As before, this expression is rearranged to obtain an equation for 
calculating the rescaled quantity:

2mM2/l)'®

,1.8 Asoil,

6.96

(8)

Three Scaling Relations

The idea of allometric rescaling is often expressed in the form of a 
power law. For example, allometric rescaling according to body mass 
is typically written as

Q = kAfP (9a)
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In this abbreviated expression, Q stands for any quantity, and M 
stands for body mass. The more complete expression is

Q{M) = QiMXMlMJ (9b)

Translation to the abbreviated version occurs by writing 0(A/) as g 
and replacing Q{M^ • M~^ with k. The best known allometric scal­
ing according to body mass is Kleiber’s law, which states that energy 
use at rest (BMR — joules • s“') scales allometrically with body mass 
(M = kg), according to an exponent less than one:

BMR = k (10)

This expresses, in quantitative terms, the idea that large organisms 
live less intensely than small ones, which consume more oxygen and 
food per unit of body mass (Kleiber 1961).

In a similar fashion, allometric rescaling according to Euclidian 
length L can be written as

Q = kL» (11a)

where Q again stands for any quantity of interest. Z) (= 1 - p) either 
represents Euclidian dimensions (D = 1, 2, 3) or it represents fractal 
dimensions (Mandelbrot 1977), as in the example of soil area. The 
fractal dimension I < D < 2 represents a convoluted line embedded 
in a plane. The fractal dimension 2 < Z) < 3 represents a convoluted 
area embedded in a volume. In this expression, k stands for Q(LJ ■ 
L~° and the expanded expression for partial allometry is

Q{L) = QiLXULJ (lib)

Many quantities scale allometrically with time. Examples are fre­
quency of measles epidemics (Sugihara and May 1990), daily rainfall 
(Lovejoy and Shertzer 1986), and the frequency at which animals 
change their direction of movement (Frontier 1987). The general ab­
breviated expression for scaling with time is

Q = kT (12a)

where Q again represents any quantity of interest. Tis time and t is an
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exponent expressing the degree of acceleration (t > 1) or dampening 
(t < 1) as the scope of T increases. In this expression, k stands for 
g(TJ • Ti\ The full expression is

Q{T) = QiTXTITj^ (12b)

The examples to date from the ecological literature suggest that t is 
often fractal; environmental processes rarely occur according to the 
ticking of a clock (t = 1) or as smooth Newtonian acceleration or 
deceleration (t = 2). They occur instead as episodic outbursts, with 
rates somewhere between the regularity of a clock and Newtonian ac­
celeration.

Mass, length, and time are most commonly encountered in allomet­
ric rescaling, but in principle any quantity can be used. One could, 
for example, rescale organism form and function according to energy 
exchange, for which the units are energy/time (e.g., watt = joule • s“‘):

Q{E) = QiEXElEy (13)

Allometric rescaling can be applied to complex quantities. An ex­
ample is scaling of spatial heterogeneity with length scale. If we mea­
sure spatial heterogeneity (as a variance) of numbers of organisms {N) 
in contiguous quadrats of 1 cm, then recompute the variance using 
contiguous quadrats of 10 cm, we can expect the variance to increase 
if organisms are clumped. In aquatic habitats, we expect heterogeneity 
to increase in a regular way with increase in quadrat size, reflecting the 
physical structure of the surrounding medium (Platt and Denman 
1975). This regularity can be expressed as an allometric scaling:

Var(A) = Var(A„)(L/LJP (14)

Spatial allometry (P # 1) forces a rethinking of the use of statistical 
techniques based on constant variances.

Scaling relations could be written for any pair of quantities thought 
to be similar. The generic expression for allometric rescaling of some 
quantity Q according to some other quantity Y is:

Q{Y) = Q{YXY!YJ (15a)

This is easily rewritten as a statement of proportion, as in the generic
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recipe for allometric rescaling listed above. The short form of the ge­
neric scaling law is

Q = kY^ (15b)

Scope

The ratio Y!Y^ was defined in passing as the scope of the rescaling. 
This ratio is a dimensionless number: it has neither units (e.g., kg, m, 
s) nor dimensions (e.g., mass, length, time). This lack of units results 
from the rules for operations on units; it should not be confused with 
the practice of omitting units. The concept of scope as a dimensionless 
ratio can be extended to other applications of scaling theory. Several 
examples, selected from a larger collection (Schneider 1994a), will be 
described.

The biological and physical phenomena that ecologists study typi­
cally have upper and lower limits in space and time. In common usage, 
the scale of these phenomena refers either to the upper or lower limit. 
Equivalent pairs of terms (Sugihara and May 1990) are the minimum 
(or inner) scale and the maximum (or outer) scale. Still another pair is 
grain and extent (Wiens 1989). The scope of a natural phenomenon is 
defined as the ratio of the upper to the lower limit. Scope is thus the 
ratio of the extent to the grain, or of the outer to the inner scale. An 
example is the frequency of El Nino events. The time between events, 
on average, is 5 years. The temporal scope is T!T^ = 8 years h- 2 
years = 4.

The spatial and temporal scopes of natural phenomena are often 
graphed in two dimensions. Figure 12.1 shows an example for El Niiio 
events. Logarithmic axes are used because these show multiplicative 
changes (such as change in ratio), in contrast to linear axes that show 
additive changes. The upper and lower limits of the hatched area corre­
spond to the upper and lower frequency of such events. The right and 
left limits of the hatched area correspond to the spatial range and reso­
lution. The distance between upper and lower limits on this logarith­
mic plot corresponds to the temporal scope 777^. The distance from 
left to right indicates the spatial scope L/L„. The larger the hatched 
area in these diagrams, the greater the scope.

Scope (as a dimensionless ratio) can also be used to express the 
capability of measurement instruments. The scope of an instrument is 
defined as the ratio of the maximum measurement to the resolution.
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A surveyor’s chain, for example, has a scope of approximately 10 m ^ 
0.002 m = 50,000. A satellite positioning system (Vande Castle, chap­
ter 13) has a scope of approximately 20,000 km h- 0.1 km = 200,000. 
This is calculated as the maximum distance between two points on the 
earth’s surface, divided by the resolution. The scope of the satellite 
system is of course greater, but only by a factor of 4. Intuitively, one 
would have thought that the satellite positioning system would have 
hundreds of times the scope of a surveyor’s chain.

Still another application is the spatial scope of a survey, defined as 
the ratio of the area to be surveyed to the area of each measurement. 
An example is the distribution of Pinus edulis—Juniperus mono- 
sperma (pinon pine-juniper) woodland in a 100,000-ha reserve (Milne 
et al. 1992). The spatial scope of an aerial survey, based on a resolution
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FIGURE 12.1
Scope diagram for El Nino events. Upper limit of hatched area is maximum time 
between events, lower limit is minimum time between events. Left limit is minimum 
linear extent of affected area. Right limit is maximum linear extent of affected 
area.
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of 2.54 m X 2.54 m pixels in photographs, is 1.6 x 101 The scope of 
the ground-based survey of 30 randomly selected plots, each 10 m on 
a side, is 10^ The scope of the aerial survey is more than 1000 times 
greater than the 30-plot survey. Computing, then plotting the scope of 
a survey relative to suspected sources of variation in the quantity of 
interest, often proves to be informative. Expressed as a graph, scope 
calculations illustrate the advantages and limitations of a particular 
instrument for investigating natural phenomena.

The scope of an experiment is a related application. Specifically, the 
scope of an experiment is the area in which the experiment is set, rela­
tive to the minimum area of a sample. Table 12.1 shows a series of 
scope calculations for an exclosure experiment carried out on a muddy 
intertidal flat at Punta Mala, Panama (Schneider 1985). To test for 
effects of avian predation on density of tropical infauna in Panama, 
invertebrate density was measured at 21 sites distributed over four 
beaches at the beginning, middle, and end of a 3-month period prior 
to the migratory departure of shorebirds. At each site in January, cores 
were taken inside and outside a single roped exclosure measuring 
1 m X 1 m. Shorebirds grew accustomed to the exclosures and were 
observed walking under the ropes. Consequently, square canopies 
(1 m X 1 m) were placed over the ropes at two sites in March, 1978.

TABLE 12.1
Scope calculations for a single exclosure experiment*

Core = cm)^ = 78.5 cm^
Sample =11 cores = 864 cm^
Site = (3 my = 9 m"
Area = (20 m)^ = 400
Punta Mala inlet = (200 m)^ = 40,000
Coast = 500 km X 1 km = 500 km^

Design Unit Frame

A 11 cores 11 cores
B 11 cores Site
C 11 cores Area
D Site Area
E Area Inlet
F Inlet Coast

Scope Type of inference

1 None
104 Statistical

4630 Statistical + judgment
44 Informal survey

100 Informal survey
12,500 Informal survey

*The frame is the target of inference (population from which the sample is drawn). The scope is the ratio 
of the area of the frame to the area of the sampling unit.
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This successfully excluded birds. Canopies were placed in areas heavily 
used by foraging birds. Core samples 10 cm in diameter were taken at 
all 21 sites in January, March, and April. Cores were taken haphaz­
ardly within staked areas and within 1 m of the roped or canopied 

area.The scope of the canopy experiment depends on the frame (i.e., 
the target of inference) and on the sampling unit. The frame and unit 
correspond (respectively) to the outer and inner scale of the experi­
ment. The inner scale is fixed (a 10-cm diameter core), but there is 
flexibility (and hence room for judgment) in the choice of outer scale. 
If the target of inference is the 3 m X 3 m site where cores samples 
were taken, then the scope is 104 (see table 12.1). This means that a 
factor of 104 is needed to extrapolate from the sample (11 cores) to 
the 9-m^ site from which samples were taken. If the target of inference 
is the 20 m X 20 m area where the canopy at Punta Mala was placed, 
then the scope increases to 4630 (see table 12.1). Inference from the 
sample to this 400-m^ area is partly from judging that the site was 
typical of the area. The scope of this judgment is 44, as shown in table 
12.1. If the experimental site is judged to be representative of the 200 
m X 200 m intertidal area at Punta Mala, then the scope of inference 
is 100 relative to the experimental area (see table 12.1), and 46,300 
relative to the 11-core sample. If the results from this one inlet were 
judged to be representative of similar intertidal areas stretching 500 
km eastward, then the scope or extrapolation factor is 12,500 relative 
to the inlet (see table 12.1).

Homogeneity of Scope

The idea of scope can be incorporated directly into the statistical ma­
chinery used to analyze this experiment, using the principle of homo­
geneity of scope (Schneider 1994a). This principle says that each term 
of an equation must have the same scope. Here is an example for the 
canopy experiment, using the generalized linear model, which includes 
both normal and nonnormal error structures (Nelder and Wedderburn 
1972; McCullagh and Nelder 1989). To evaluate whether the gradient 
in density across the cage boundary changed during the experiment, 
the interaction term in a two-way classification of the data must be 
examined. The generalized linear model relates the response variable 
(T = organisms/core) to a random variable e and a structural model 
JJL composed of explanatory variables.
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(16a)

(16b)

y = |x + e

M- = Po + + 3,.2^7 • JSTj

The explanatory variables are X, = presence (0) or absence (1) of 
canopy, = beginning (0) or end (1) of experiment, and X^ • X^ = 
interaction term, or product of X, and X^. If we assume that the ran­
dom variable e is normal (i.e., constant variance around any expected 
value) in estimating the parameters, then the residuals will not be in­
dependent of the fitted values (figure 12.2a). Consequently, an F- 
distribution cannot be used to calculate Type I error.

The response variable is a count, which suggests that a Poisson error 
structure might be appropriate. A structural model based on propor­
tions, rather than on differences (as in equation 1), is generally used 
with Poisson counts:

Y=kQ'^ + e (17a)

M-= + 3,X/+ p,X2-f-p,.,X7 • X^ (17b)

This is the statistical model for the familiar two-way contingency test 
using the G-statistic, the test used originally in the analysis of the ex­
periment (Schneider 1985).

The residuals are still correlated with the fitted values (see figure 
12.2b). The variance of the counts exceeds the mean, indicating that 
the organisms are “clumped” at the scale of a core. Consequently, the 
assumption for a standard two-way contingency test (i.e., a Poisson 
error structure) is not appropriate for the data, even though the data 
are counts. The clumping or overdispersion of the response variable 
suggests that a Gamma error structure may be appropriate. If we as­
sume a Gamma error structure and use the linear rather than the loga­
rithmic model, we obtain residuals that are independent of the fitted 
values (see figure 12.2c).

Once we have an acceptable model (equations 16a and 16b with a 
gamma error structure), we can ask if the gradient in density across 
the cage boundary changed during the experiment. In statistical terms, 
should the interaction term be included in the model? The overall devi­
ance of the model from the data is i) = 1.828 (df = 7), using a Gamma 
error structure. The deviance of the model from the data, if the interac­
tion term is omitted, is Z) = 2.091 (df = 8). The reduction in deviance 
AZ) = 2.091 — 1.828 = 0.263, a reduction that is not significant at

FITTED VALUES (animals/core)

FIGURE 12.2
Residuals from analysis of invertebrate density in core samples, assuming (A) nor­
mal errors, (B) Poisson errors, (C) Gamma errors.

I
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a 5 percent, using a Chi-square distribution with a single degree of 
freedom (McCullagh and Nelder 1989). The null hypothesis, that the 
radial gradient in density around the canopy boundary did not change 
during the experiment, cannot be rejected. If we use a negative bino­
mial error structure (also appropriate), the change in deviance is even 
smaller (AZ) = 0.0127) and hence not significant.

What is the spatial scope of this conclusion? We apply the principle 
of homogeneity of scope as follows;

= ft.sample _ sample 
core site

11 0.106

• -Xj • 2^ +

site
------ +
core
104

e (18)

sample
core
11

The response variable Thas a limited scope of 11. The interaction term 
has a scope of 104 and hence the parameter 3, 2 must have a scope of 
0.106 to scale the model down to the data. Another way to look at this 
IS that the parameter scales the data up to the model by a factor of 
0.106 '■ or about 9. Similar calculations can be made for the temporal 
scope of 3, 2 if this were of interest.

Experimental results in ecology are notoriously variable. One con­
tributing factor is that experiments being reported differ considerably 
in scope. Calculations of scope, such as that shown previously, are a 
way of determining the degree of comparability of several different 
experiments. Experiments with the same scope are completely compa­
rable, and experiments with similar scope are more comparable than 
experiments with scopes that differ greatly.

Scope calculations suggest what degree and type of inference should 
be employed. In the case of the single canopy experiment at Punta 
Mala, statistical inference can be used to scale up from the sample (11 
cores) to the scale of the 9-m^ site. One might object that this consti­
tutes pseudoreplication (Hurlbert 1984), but the underlying problem 
of confounding with unmeasured effects can be addressed at this scale 
by using Monte Carlo methods to compute the probability of ob­
taining radial gradients at one site by chance alone. Here, radial gradi­
ents are defined as an observed mean within a 1 m X 1 m area being 
less than the mean in the surrounding 9 m^ - 1 m^ = 8 m^ area. Statisti­
cal inference cannot be used to scale up from the sample to the scale 
of the 400-m2 area where the canopy was placed, because at this larger 
scale only one site (experimental unit) was used. Inference to this and
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larger scales must be based on surveys (Eberhart and Thomas 1992), 
or judgment, or more experimental units.

The scope calculations shown so far have been isometric, with an 
exponent of unity. Allometric scalings may well prove to be more ap­
propriate in analyzing the spatial scope of experiments. An allometric 
relation between density and area would result in a different estimate 
of the scale-up for the exclosure experiment. If the scaling exponent 
were 1.8 rather than 2, then the scale-down from model to data is 
11 ‘ *®/104 = 0.083, rather than 11/104 = 0.106. The scale-up from data 
to model is 0.083“* = 12, rather than 9. This increase in the scaling 
factor quantifies the intuitive notion that scale-up is less certain in a 
heterogeneous environment {D = 1.8) than in a homogeneous Euclid­
ian environment (Z) = 2).

Summary

This chapter describes a simple and accessible series of concepts and 
computational methods for applying scaling theory to ecological re­
search. The first key concept uses scaled quantities rather than num­
bers stripped of units (and hence scale). The second key concept is 
allometric rescaling of one quantity according to its similarity to an­
other. This concept is readily expressed as a power law. The third key 
concept is that of scope, defined as the ratio of the range to the resolu­
tion of a quantity, instrument, survey, or experiment. The scope of any 
of these is readily expressed in diagrammatic form, which is already 
becoming increasingly common in ecology. The principle of homoge­
neity of scope proves useful in linking scaling theory to statistical 
analysis.

Rapid expansion of multiscale analysis can be expected in the next 
decade, as computational machinery (Turner and Gardner 1991b; Ras- 
tetter et al. 1992) becomes more familiar. This should lead to a better 
understanding of environmental problems through improved skill in 
analyzing physical and biological processes at multiple scales. One area 
in which progress is likely to be rapid is that of scaling measurements 
(typically at small space and time scales) up to that of problems of 
societal interest (typically at larger scales), such as global warming (In- 
nes, chapter 19) or reduced biological diversity. It is now clear that 
isometric rescaling (the “just multiply” strategy) will not work. In­
creasing facility in the use of allometric rescaling factors is likely to 
lead to more accurate computations of the expected effects of human
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activities on the environment. A second area in which rapid progress 
seems likely is in the use of fractal spatial scalings. Several interesting 
apphcations have already appeared (Lovejoy and Shertzer 1986; Milne 
et al. 1992), and more are certain to follow.

A third area in which applied scaling theory can potentially increase 
the effectiveness of ecological practice is in multiscale analysis of the 
behavior of resource users, and their interaction with the environment 
(Lee 1993). Humans have always interacted with their environment 
at multiple spatial scales. The trend in this century has been toward 
increasing the spatial and energetic scale of environmental alteration 
(dredging, logging, etc.). Another trend has been increased scale of 
spatial coordination of resource exploitation. Fish have traditionally 
been pursued through the uncoordinated activity of individual or rec­
reational fishers. Throughout this century, pursuit has become coordi­
nated at increasingly large scales through technological innovations 
such as sonar and satellite imagery. The corporations that deploy large 
fishing fleets are well aware of their ability to locate and harvest every 
aggregation within extensive areas of the ocean. There has, however, 
been a lag in the degree to which responsibility for increased resource 
exploitation has been accepted. Larger-scale institutional arrange­
ments for responsibility have been slow to evolve, leading to overex­
ploitation of renewable resources such as fish and timber. Large-scale 
responsibility is clearly needed, but large-scale institutional arrange­
ments tend to be rigid and unresponsive (Rykiel, chapter 21). Conse­
quently, environmental science within centrally organized governmen­
tal departments may turn out to be irrelevant or wrong. In any case, 
resource users will consider it irrelevant and wrong (Hobbs, chapter 
20). One solution is multiscale or community-based science, in which 
resource users participate actively in the gathering and assembly of 
knowledge about those resources. Ecologists involved in conservation- 
related problems may find that they are more effective working with 
resource users than they are in relying entirely on technicians. Regard­
less of the institutional arrangements for ecological research, it is evi­
dent that multiscale reasoning is required for understanding the social, 
legal, and economic settings for ecological problems, as much as for 
understanding the underlying biological questions.

The concept of scope is based on the principle of similitude, which 
is widely used in geophysics, oceanography, and meteorology. This 
principle is used in allometric scaling according to body size, but it has 
not yet been widely applied in biology at the population or community 
level. If scaling theory is to become part of normal ecological practice.
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the first challenge will be the development and mastery of the compu­
tational machinery appropriate to applying the principle at the popula­
tion and community levels of organization. An allied challenge will be 
integrating this machinery with current statistical methods in ecology. 
Integration is important because the statistical machinery by itself im­
pedes the use of the principle of similitude. Statistical methods do not 
distinguish numbers from scaled quantities. This reinforces the wide­
spread (Schneider 1994a) practice of using numbers rather than scaled 
quantities in both theoretical and experimentally oriented papers in 
ecology. This practice leads to computational errors because the rules 
for working with scaled quantities differ from those for working with 
pure numbers. The practice retards the development of ecological the­
ory by eliminating the mathematical basis for multiscale reasoning. 
Progress in applying multiscale analysis will accelerate when ecologists 
become as skilled in applying the principle of similitude as they are 
now in applying statistical reasoning.
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